Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Biomol NMR ; 75(4-5): 167-178, 2021 May.
Article in English | MEDLINE | ID: covidwho-1184691

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological cause of the coronavirus disease 2019, for which no effective antiviral therapeutics are available. The SARS-CoV-2 main protease (Mpro) is essential for viral replication and constitutes a promising therapeutic target. Many efforts aimed at deriving effective Mpro inhibitors are currently underway, including an international open-science discovery project, codenamed COVID Moonshot. As part of COVID Moonshot, we used saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy to assess the binding of putative Mpro ligands to the viral protease, including molecules identified by crystallographic fragment screening and novel compounds designed as Mpro inhibitors. In this manner, we aimed to complement enzymatic activity assays of Mpro performed by other groups with information on ligand affinity. We have made the Mpro STD-NMR data publicly available. Here, we provide detailed information on the NMR protocols used and challenges faced, thereby placing these data into context. Our goal is to assist the interpretation of Mpro STD-NMR data, thereby accelerating ongoing drug design efforts.


Subject(s)
COVID-19 Drug Treatment , Coronavirus 3C Proteases , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Humans , Protease Inhibitors/therapeutic use
2.
Angew Chem Int Ed Engl ; 59(52): 23544-23548, 2020 12 21.
Article in English | MEDLINE | ID: covidwho-728060

ABSTRACT

The SARS-CoV-2 main protease (Mpro ) cleaves along the two viral polypeptides to release non-structural proteins required for viral replication. MPro is an attractive target for antiviral therapies to combat the coronavirus-2019 disease. Here, we used native mass spectrometry to characterize the functional unit of Mpro . Analysis of the monomer/dimer equilibria reveals a dissociation constant of Kd =0.14±0.03 µM, indicating MPro has a strong preference to dimerize in solution. We characterized substrate turnover rates by following temporal changes in the enzyme-substrate complexes, and screened small molecules, that bind distant from the active site, for their ability to modulate activity. These compounds, including one proposed to disrupt the dimer, slow the rate of substrate processing by ≈35 %. This information, together with analysis of the x-ray crystal structures, provides a starting point for the development of more potent molecules that allosterically regulate MPro activity.


Subject(s)
Coronavirus 3C Proteases/chemistry , Coronavirus Protease Inhibitors/chemistry , Models, Molecular , SARS-CoV-2/enzymology , Small Molecule Libraries/chemistry , Allosteric Regulation , Binding Sites , Biological Assay , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Protease Inhibitors/pharmacology , Crystallography, X-Ray , Mass Spectrometry , Protein Binding , Protein Conformation , Protein Multimerization , SARS-CoV-2/physiology , Small Molecule Libraries/pharmacology , Substrate Specificity , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL